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Experimental observation of the emergence of
Peregrine-like events in focusing dam break flows
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Simple photonic fiber-based workbenches have been able to
emulate well-known nonlinear wave dynamics occurring in
deep or shallow water conditions. Here, by investigating the
nonlinear reshaping of a flat-top pulse upon propagation in
an anomalous dispersive optical fiber, we observe that typical
signatures of focusing dam break flows and Peregrine-like
breather events can locally coexist in spontaneous pattern
formations. The experimental measurements are in good
agreement with our numerical predictions.  © 2018 Optical
Society of America
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Optical fibers have shown their incredible ability to act as a
perfect testbed platform to explore the richness of the dynamics
of nonlinear physics. Indeed, their weak levels of losses, as well
as the excellent knowledge of both linear and nonlinear physical
characteristics, are key ingredients to carry out experimental
demonstration of new coherent solutions with an outstanding
agreement with the theoretical solutions of the nonlinear
Schrédinger equation (NLSE). As soon as the early 1980s, sol-
itons were demonstrated in single-mode optical fibers [1]. In
the 21st century, new kinds of solitons relying on a continuous
wave background have stimulated a large experimental interest,
especially in the context of the rogue-like structures emerging
in the anomalous dispersive regime of propagation. Taking ad-
vantage of the advanced control provided by the components of
the telecommunication industry and new ultrafast characteri-
zation methods, Peregrine waves [2,3], and higher-order or
super-regular breathers [4-6], have been experimentally gener-
ated. Other recent works have stressed the crucial importance
and the universality of such structures, especially the Peregrine
wave [7-9], which can also be detected in deep water and other
nonlinear media governed by the NLSE [10,11]. In parallel,
normally dispersive fibers have also stimulated experimental re-
search, mainly driven by the interest in the study of dispersive
shock waves (DSWs) [12]: optical equivalent of undular bores
[13], reproduction of dam-breaking problems [14], or the
Riemann simple waves [15], have provided recent examples
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of the insights that can be obtained in the defocusing regime
of propagation.

Nevertheless, nonlinear dynamics observed in the anoma-
lous or (weak) normal dispersion regimes of propagation are
regarded as two completely different cases most of the time.
The first one is dominated by bright soliton-like structures
and modulation instability (MI) in a perfect analogy to deep-
water conditions [16]. The second one is ruled by DSWs that
satisfy the so-called nonlinear shallow water equations [17].
However, recent theoretical works have stressed that some sim-
ilar characteristics with the DSW may appear in the regime of
focusing nonlinearity with weak dispersion, thus leading to the
emergence of dispersive dam break flows in the NLSE box
problem [18,19]. In this new scenario, the emergence of a non-
linear wave train regularizes an initial sharp transition between
the uniform plane wave and the zero-intensity background.
Theoretical solutions essentially describe a modulated soliton
train. This phenomenon provides a new semi-classical interpre-
tation that has been previously described in the spatial domain
as a nonlinear Fresnel diffraction [20]. This box problem (i.e.,
an initial square profile) then gives rise to two such counter-
propagating modulation dynamics, whose interaction may turn
into a cluster of breathers [19]. In the present contribution, we
confirm theoretical predictions of Refs. [18,19] by providing a
detailed experimental observation of the regularization of sharp
transitions from a super-Gaussian pulse in the presence of fo-
cusing nonlinearity. We evidence transient breathing dynamics
of dispersive dam break flows in the form of Peregrine-like
breather structures. We also characterize the interaction event
of the two counter-propagating dispersive dam break flows.

We investigate the nonlinear propagation of a flat-top pulse
in an anomalous dispersive fiber. The evolution of the slowly
varying envelope A z,t of the complex electric field is ruled
by the focusing NLSE: i0A-0z - B,0°A-0t>  yjAj*’A 0O,
where 3, is the second-order dispersion and y is the Kerr non-
linearity, t and z being the temporal coordinate and the propa-
gation distance, respectively. In order to illustrate the typical
evolution of the box problem in the regime of focusing non-
linearity with small dispersion, we base our numerical simula-
tions on the fiber parameters used in the experiments discussed
below: B, -21 ps?-km™ty 1.3 W.km™. We analyze
the propagation of an input pulse corBsponding to a twelfth-
order super-Gaussian pulse At Poexp -+ T, 22
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with a full width at half-maximum (FWHM): Ty
2In2+¥%#T, 2T, 600ps and an input power P,

2 W. This choice of parameters ensures that the nonlinearity
initially dominates the dispersive contribution, as assumed in
Refs. [18,19], to apply the WhithaB modulation theory.
This condition corresponds to N Lertye 1, where
Lne  YPo % and Ly T3B,j [21]. The longitudinal
evolution of the temporal profile of the pulse is depicted in
Fig. 1(a).

Upon the first stage of propagation dominated by self-phase
modulation (z < 3 km), the pulse develops a strong frequency
chirp in its sharp edges. Then the anomalous dispersion leads to
the formation of a highly oscillating pattern induced by the
beating between the highly chirped edges and the flat-top re-
gion of the pulse. In the focusing regime, this sinusoidal beating
then evolves into the instantaneous formation of modulated
wave trains after 3.75 km, thus regularizing the initial discon-
tinuities in both edges of the pulse [see inset in Fig. 1(a)]
[18,19]. Such dispersive dam break flows expand inside the
pulse with a constant velocity v Ly 8jBoj  during
propagation and with decaying amplitudes of the oscillations.
Here we also clearly note that each oscillation of the generated
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Fig. 1. (a)—(c) NLSE simulation of the nonlinear propagation of a
600 ps twelfth-order super-Gaussian pulse in an anomalous dispersive
fiber N 52 . (a) Temporal dynamics as a function of the propaga-
tion distance. (b) Zoom-in on different temporal profiles (black solid
lines) at 3.75 and 10 km (bottom to top) compared to the theoretical
fit based on a Peregrine breather solution (red dashed line). Temporal
phase profiles are also plotted with mixed blue lines. (c) Corresponding
spectral profile at 3.75 km. (The inset is a magnification of the wing of
the spectrum.) (d), (e) NLSE simulation for a 52 ps third-order super-
Gaussian pulse N 13 . (d) Temporal dynamics as a function of
propagation distance. (e) Zoom-in on different temporal profiles
(black solid lines) at 1.9, 2.66, and 3.23 km (bottom to top) compared
to the Peregrine solution (red dashed line). Temporal phase profiles are
also plotted with mixed blue lines.
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modulated wave presents successive growth-decay cycles, which
is a key feature of breather solutions to the focusing NLSE.
Inspired by the recent confirmation of the universal emergence
of the Peregrine soliton (PS) in the focusing dynamics near a
gradient catastrophe [7], we checked their temporal profiles at
the point of each maximum compression by using the Peregrine
profile: Apg t  Agl-4-1 4t-tc 2 jByA: . Two
examples for z ~ 3.75 and 10 km are reported in Fig. 1(b)
for which we observe a very good agreement between these lat-
eral-intensity oscillations and the Peregrine solution. The prop-
erties of the central peak and adjacent zero-intensity points are
well reproduced by adjusting the parameters A, and t, using
the values of the peak power P, and temporal position of
the localized strulgure emerging at the point of maximum com-
pression: Ag P.+3. For instance, the first Peregrine-like
structure reaches a maximum compression at z  3.75 km
and tc 276 ps. In this particular case, the corresponding
value Ay is almost equal to the square root of the power of
the flat-top pulse taken at t¢ in the early stage of propagation,
namely at z 1.5 km.

When looking at the spectral properties in Fig. 1(c), we also
confirm the typical features of the Peregrine breather at
z  3.75 km, in particular, the linearly decreasing wings when
plotted in a log scale. One can also notice in the magnified view
the sinusoidal over-modulation of the spectrum linked to the
interference between the two Peregrine-like structures that are
temporally spaced by 554 ps. Let us stress here that, in con-
trast to the case of smooth pulses where it has been rigorously
demonstrated that PSs emerge in the semi-classical limit of the
NLSE [22], there is no mathematical proof of the existence of
this perfect shape in the dam break problem. Indeed, from the
phase profiles plotted in Fig. 1(b) (as could be detected using
real-time temporal measurements [23]), we can see that even if
the typical m-phase shift of the PS is observed in the wings, the
phase may also exhibit a significant additional tilt. These con-
clusions may be confirmed by the use of more advanced tools
such as the local inverse scattering transform [24]. The increas-
ing complexity of the temporal waveform does not allow such a
spectral comparison at z 10 km. All the oscillations of the
dispersive dam break flows appear to breathe and locally reach
the asymptotic Peregrine-like solution at maximum compres-
sion. However, their maximal peak power decreases with pro-
pagation until reaching an asymptotic state predicted in
Refs. [18,19], namely a modulated soliton train with a peak
power close to 4 Pg. This can be observed for a longer propa-
gation distance > 15 km , but a detailed study of this phe-
nomenon is beyond the scope of this Letter.

It is worth mentioning that, in our simulations, spontaneous
MI emerges mainly from the center of the box problem after
12 km of propagation [see Fig. 1(a)]. Therefore, the observa-
tion of dispersive dam break flows and their possible collision
may be limited by the unstable nature of the flat top of the
pulse [19]. Indeed, the M1 here develops from numerical noise
and prevents the genuine analysis of the interaction event of the
two counter-propagating dispersive dam break flows which
should occur at a longer distance VT po2  14.4 km (relation
given for the ideal box problem). This noise-driven MI regime
is characterized by the emergence of Akhmediev breather struc-
tures with frequency that experiences the highest M1 gain [25].
However, this spontaneous emergence of Ml leads to collision
processes with DSW-like nonlinear wave trains, which generate
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rogue wave structures with peak power up to 29 W. By consid-
ering typical experimental input noise in our simulations, the
deleterious effect of MI would arise, even at shorter distances.
Consequently, we have reduced the initial pulse width to
52 ps in the experiments in order to enable the interaction of
the counter-propagating wave trains on a very short distance.
Figure 1(d) presents the corresponding numerical evolution with
an input pulse used in the experiment. \We are able to character-
ize focusing dispersive dam break flows whose localized peaks are
well fitted by the Peregrine breather [see Fig. 1(e)]. In addition,
the collision of the two counter-propagating flows can be now
easily observed at 3.23 km. We confirm that the resulting high
amplitude structure profile is again well fitted by the central peak
of the Peregrine solution and associated phase jumps.

The experimental setup is depicted in Fig. 2 and is based
exclusively of devices commercially available and typical of
the telecommunication industry. A continuous wave laser at
1550 nm is first intensity modulated using a lithium niobate
modulator driven by an electrical generator, thus delivering
super-Gaussian pulses at a pulse repetition rate of 100 MHz.
Great care has been taken to the symmetry of the resulting
pulses that should present sharp edges to be as close as possible
to the ideal box problem. The intensity profile of these 52 ps
flat-top pulses recorded with a high-speed photodiode is pro-
vided in the inset of Fig. 2. The resulting pulse is then amplified
by an erbium-doped fiber amplifier (EDFA). The peak power
of the pulse is accurately controlled by an optical variable
attenuator. Note that, in contrast to experiments dealing with
DSW generation in normally dispersive fibers [14,26], the level
of the extinction ratio is not of crucial importance here: in the
focusing regime of propagation, a residual coherent background
will not interfere with the pulse structure. In contrast, one lim-
iting factor could be the development of unwanted spontane-
ous MI on the top of the super-Gaussian pulse [19,20]. As
mentioned previously, to circumvent this problem, we have
chosen a pulse with a relatively short duration, and we inserted
a narrow-band optical bandpass filter with a spectral width of
1 nm. The propagation takes place in a standard single-mode
fiber (SMF28) with parameters corresponding to the ones de-
scribed previously. Different lengths of fibers ranging from 1 to
3.7 km have been tested during the experiments. The analysis
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Fig. 2. Experimental setup. CWL, continuous wave laser; 1M, in-
tensity modulator (40 GHz typical bandwidth); EPG, electrical pulse
generator (IXBlue Photonics Modbox); SMF, single-mode fiber;
OVA, optical variable attenuator; EDFA, erbium-doped fiber ampli-
fier; OSO, optical sampling oscilloscope (Alnair Labs, Eye-Checker
EYE 2000C); OSA, optical spectrum analyzer (Yokogawa
AQ6370). Inset: temporal profile of the input pulse (solid line) com-
pared with a third-order super-Gaussian fit (circles).
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of the output signal is carried out in the temporal and spectral
domains by means of an optical sampling oscilloscope (OSO)
and an optical spectrum analyzer (OSA), respectively.

In Fig. 3(a), we report a first series of measurements accord-
ing to the propagation distance. More precisely, thanks to a full
set of SMF segments characterized by different lengths, we have
depicted the output intensity profile as a function of the propa-
gation distance for a fixed input peak power P, 1.9 W. We
clearly observe in the concatenated map the expanding nonlin-
ear oscillatory regularization emerging from the initial discon-
tinuous nature of the intensity profile.

Indeed, after 1.5 km of propagation, two typical high-peak
power spikes of light (FWHM duration of 2 ps) are generated
in the edges of the super-Gaussian wave. Their temporal sepa-
ration of 30 ps is in agreement with the results expected from
numerical simulations [see Fig. 3(b)], including typical losses of
0.2 dB - km™. The ratio between the peak power of these spikes
and the top of the initial super-Gaussian pulse is also well pre-
dicted. We can notice that, as expected by our numerical results,
these structures emerge from the flat-top edges of the pulse, sub-
sequently compress, and reach a maximum peak power before
partly vanishing after 2.5 km. Following this breathing stage,
a second set of oscillations emerge in the inner part of the pulse
and counter-propagate. This particular dynamics is one of the
main features of the focusing dispersive dam break flows in
the box problem. As a result, for longer propagation distance,
a collision occurs to generate a giant spike here localized at z
3.2 km [19]. The spectral evolution displayed in Fig. 3(c) con-
firms the complex dynamics involved by the super-Gaussian
pulse in agreement with the simulations reported in Fig. 3(d).
The initially narrow 79 GHz spectrum (-20 dB spectral width)
broadens up to a 420 GHz width with a triangular shape
[when plotted in a logarithmic scale; see Fig. 4(c)] that is typical
of Peregrine breathers [2,3]. Due to the presence of two struc-
tures, the spectrum is intensity modulated with a period of

34 GHz that corresponds to the inverse of the temporal spac-
ing between the pulses [see also Fig. 4(c)]. The breathing of
nonlinear structures is also apparent on the spectrum map for
longer propagation distances. The emergence of additional and
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Fig. 3. Longitudinal evolution of (a) temporal and (c) spectral
intensity  profiles for P, 1.9 W recorded experimentally.
(b), (d) Corresponding simulations based on the NLSE with fiber
losses taken into account.
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Fig. 4. (a), (b) Temporal and (c), (d) spectral intensity profiles ob-
tained at two propagation distances, 1.96 and 3.25 km. The experi-
ments are shown with magenta lines, whereas the simulations are
shown with black lines. Theoretical fit: Peregrine breather solution
(green dashed line).

unequally temporally spaced peaks leads to more complex spec-
tra. We have checked that no spectral signature of unwanted
spontaneous MI was visible in the spectrum.

In order to go further into the analysis of the generated highly
localized structures, we have characterized their pulse shapes at
different stages of propagation and compare in Fig. 4 their in-
tensity profiles with a genuine Peregrine breather solution of the
NLSE. The details of the structure obtained at the first point of
maximum compression are provided in Fig. 4(a) and outline a
slight discrepancy regarding the peak power (i.e., maximal focus-
ing) that may be attributed to the bandwidth limitation of our
OSO. Therefore, this limitation, as well as a small temporal
asymmetry in the input experimental waveform, also prevents
us from clearly resolving the exact formation of the giant struc-
ture emerging at the collision of counter-propagating modulated
wave trains (z = 3.25 km) in Fig. 4(b). Spectral measurements
are summarized in Figs. 4(c) and 4(d), and show a good agree-
ment with the numerical simulations.

To conclude, we have provided the experimental evidence of
the complex nonlinear reshaping of a super-Gaussian pulse
upon nonlinear propagation in a weakly dispersion focusing
medium. Our results confirm the qualitative behavior mea-
sured in the spatial domain [20] and the power of the
space/time duality. After an initial shock-like stage induced
by the overlap of the highly chirped and sharp edges of the pulse
with its top region, strong temporal oscillations appear and
nonlinearly reshape into a Peregrine-like structure at each maxi-
mum compression. This transient evolution is then marked by
the breathing of the wave structures. In contrast to Ref. [20],
we have used fully coherent initial conditions and a medium of
propagation with fully instantaneous nonlinear Kerr response.
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Finally, we have also characterized the collision of the two
counter-propagating dispersive dam break flows in the form
of a Peregrine-like structure.
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